Mı́ry a lineárnı́ maticové nerovnosti v optimálnı́m polynomiálnı́m řı́zenı́ Measures and linear matrix inequalities in polynomial optimal control Summary

نویسنده

  • Didier Henrion
چکیده

Míry a lineární maticové nerovnosti v optimálním polynomiálnímřízení Measures and linear matrix inequalities in polynomial optimal control Summary This lecture describes the application of modern techniques of convex optimization to solve nonconvex nonlinear optimal control problems (OCPs) which may feature oscillation phenomena (chattering control) or concentration phenomena (impulsive control). First, with the help of occupation measures, we reformulate nonconvex non-linear OCPs as convex linear programming (LP) problems on the cone of nonnegative measures. Second, relying on recent results merging techniques of real algebraic geometry , functional analysis (measures, problems of moments) and mathematical programming (semidefinite optimization), we propose a general methodology to solve numerically these infinite-dimensional LP on measures. We describe a hierarchy of convex semidefinite programming (SDP) or linear matrix inequality (LMI) relaxations that can be implemented to solve OCP with asymptotic convergence guarantees. 2 Souhrn Tato přednáška popisuje, jak aplikovat moderní techniky konvexní optimal-izace nařešení problémů optimálníhořízení nelineárních a nekonvexních systémů, které mohou obsahovat jevy oscilace a koncentrace. Nejprve pomocí měr obsazenosti vyjádříme nelineární a nekonvexní problémy optimálníhořízení jako konvexní problémy lineárního programování vkuželu nezáporn´ych měr. Poté na základě nejnovějších v´ysledků, které spojily techniky reálné alge-braické geometrie, funkcionální anal´yzy (míry, problémy momentů) a matem-atického programování (semi-definitní optimalizace), navrhujeme všeobecnou metodologii numerick´ychřešení těchto nekonečněrozměrn´ych problémů lineárního programování měr. Popisujeme hierarchii konvexních semi-definitních problémů neboli lineární maticové nerovnosti, která může b´yt použita křešení problémů optimálníhořízení se zárukou asymptotické konvergence. 3 Klíčová slova: Optimálnířízení, konvexní optimalizace.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modal occupation measures and LMI relaxations for nonlinear switched systems

This paper presents a linear programming approach for the optimal control of nonlinear switched systems where the control is the switching sequence. This is done by introducing modal occupation measures, which allow to relax the problem as a primal linear programming (LP) problem. Its dual linear program of HamiltonJacobi-Bellman inequalities is also characterized. The LPs are then solved numer...

متن کامل

Modal occupation measures and LMI relaxations for nonlinear switched systems control

This paper presents a linear programming approach for the optimal control of nonlinear switched systems where the control is the switching sequence. This is done by introducing modal occupation measures, which allow to relax the problem as a primal linear programming (LP) problem. Its dual linear program of HamiltonJacobi-Bellman inequalities is also characterized. The LPs are then solved numer...

متن کامل

Haar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems

‎In this paper‎, ‎Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems‎. ‎Firstly‎, ‎using necessary conditions for optimality‎, ‎the problem is changed into a two-boundary value problem (TBVP)‎. ‎Next‎, ‎Haar wavelets are applied for converting the TBVP‎, ‎as a system of differential equations‎, ‎in to a system of matrix algebraic equations‎...

متن کامل

A Computationally Efficient Formulation of Robust Model Predictive Control using Linear Matrix Inequalities

In this paper, we present an off-line approach for robust constrained MPC synthesis that gives an explicit control law using Linear Matrix Inequalities (LMIs). This off-line approach can address a broad class of model uncertainty descriptions with guaranteed robust stability of the closed-loop system and substantial reduction of the on-line MPC computation.

متن کامل

Determination of a Matrix Function in the Form of f(A)=g(q(A)) Where g(x) Is a Transcendental Function and q(x) Is a Polynomial Function of Large Degree Using the Minimal Polynomial

Matrix functions are used in many areas of linear algebra and arise in numerical applications in science and engineering. In this paper, we introduce an effective approach for determining matrix function f(A)=g(q(A)) of a square matrix A, where q is a polynomial function from a degree of m and also function g can be a transcendental function. Computing a matrix function f(A) will be time- consu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012